APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS: REVISITED
نویسندگان
چکیده
منابع مشابه
Homomorphisms and Derivations in C-Ternary Algebras
and Applied Analysis 3 in the middle variable, and associative in the sense that x, y, z,w, v x, w, z, y , v x, y, z , w, v , and satisfies ‖ x, y, z ‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖ x, x, x ‖ ‖x‖ see 45, 47 . Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product x, y, z : 〈x, y〉z. If a C∗-ternary algebra A, ·, ·, · has an identity, that is, an element e ∈ A such that x x, e, e ...
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملApproximate C-ternary Ring Homomorphisms
In this paper, we establish the generalized Hyers–Ulam–Rassias stability of C-ternary ring homomorphisms associated to the Trif functional equation d · C d−2f( x1 + · · ·+ xd d ) + C d−2 d ∑
متن کاملApproximate *-derivations and approximate quadratic *-derivations on C*-algebras
* Correspondence: baak@hanyang. ac.kr Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea Full list of author information is available at the end of the article Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of q...
متن کاملResearch Article Homomorphisms and Derivations in C* -Algebras
Ulam [1] gave a talk before theMathematics Club of the University ofWisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms. We are given a group G and a metric group G′ with metric ρ(·,·). Given > 0, does there exist a δ > 0 such that if f :G→G′ satisfies ρ( f (xy), f (x) f (y)) < δ for all x, y ∈G, then a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Mathematics
سال: 2013
ISSN: 1976-8605
DOI: 10.11568/kjm.2013.21.2.161